Precision Operational Amplifier, Low Offset, 10 MHz, Rail-to-Rail Input/Output

NCS20166, NCV20166

The NCS20166 features rail-to-rail input and output, and 10 MHz bandwidth. This low quiescent current, low noise amplifier is trimmed to provide a low initial input offset voltage. This op amp operates over a supply range from 3.0 V to 5.5 V. All versions are specified for operation from -40° C to $+125^{\circ}$ C.

Features

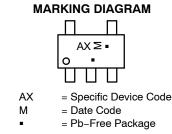
- Gain Bandwidth: 10 MHz Typical
- Offset Voltage: 550 μ V Max (V_S = 5 V)
- Supply Voltage: 3 V to 5.5 V
- Quiescent Current: 1.55 mA Max
- Voltage Noise Density: $10 \text{ nV}/\sqrt{\text{Hz}}$ Typical
- Rail-to-Rail Input and Output
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Current Sensing
- Current Sensing in Motor Control Circuits
- Current Monitor for Power Supplies
- Battery Powered Instrumentation
- Transducer or Sensor Interface
- Medical Instrumentation

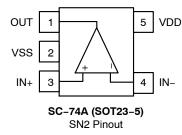
End Products

- Industrial
- Power Supplies
- Computers and Servers
- Automotive
- Medical Instrumentation



ON Semiconductor®

www.onsemi.com



SC-74A (SOT23-5) CASE 318BQ

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Device	Configuration	Marking	Package	Shipping†		
INDUSTRIAL AND AUTOMOTIVE						
NCS20166SN2T1G	<u>Cia ala</u>	AX	SC-74A	0000 / Tana and Daal		
NCV20166SN2T1G*	Single	AX	(SOT23–5)	3000 / Tape and Reel		
t For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging						

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV prefix for automotive and other applications requiring unique site and control change requirements; AEC–Q100 qualified and PPAP capable ** Contact local sales office for more information

Table 1. ABSOLUTE MAXIMUM RATINGS Over operating free-air temperature, unless otherwise stated.

Parameter	Rating	Unit
Supply Voltage (V _{DD} - V _{SS})	6	V
INPUT AND OUTPUT PINS		
Input Voltage (Note 1)	V_{SS} – 0.3 to V_{DD} + 0.3	V
Differential Input Voltage (Note 1)	±Vs	V
Input Current (Note 1)	±10	mA
Output Short Circuit Current (Note 2)	Continuous	
TEMPERATURE		
Operating Temperature	-40 to +125	°C
Storage Temperature	-65 to +150	°C
Junction Temperature	+150	°C
Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions	+260	°C
ESD RATINGS (Note 3)		
Human Body Model (HBM)	2000	V
Charged Device Model (CDM)	1000	V
OTHER RATINGS		
Latch-up Current (Note 4)	100	mA
Moisture Sensitivity Level (MSL)	1	
Continuous Total Power Dissipation	200	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Input terminals are diode clamped to the power supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to 10 mA or less

2. Short–circuit to ground up to $T_A = 125^{\circ}C$.

3. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per JEDEC standard JS-001-2017 (AEC-Q100-002)

ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011)

4. Latch-up Current tested per JEDEC standard JESD78E (AEC-Q100-004)

Table 2. THERMAL INFORMATION (Note 5)

Parameter	Symbol	Package	Value	Unit
Junction-to-Ambient	θ_{JA}	SC-74A (SOT23-5)	198	°C/W

5. As mounted on an 80x80x1.5 mm FR4 PCB with 600 mm² and 2 oz (0.034 mm) thick copper heat spreader. Following JEDEC JESD/EIA 51.1, 51.2, 51.3 test guidelines

Table 3. OPERATING CONDITIONS

Parameter	Symbol	Min	Мах	Units
Supply Voltage (V _{DD} - V _{SS})	VS	3	5.5	V
Specified Operating Temperature Range	T _A	-40	125	°C
Input Common Mode Voltage Range	V _{ICMR}	V _{SS}	V _{DD}	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

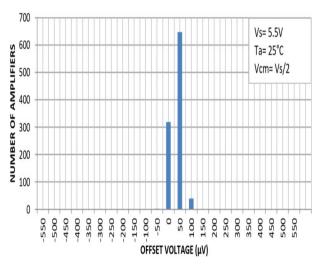
Table 4. ELECTRICAL CHARACTERISTICS $V_S = 3.0 V$ to 5.5 VAt $T_A = +25^{\circ}C$, $R_L = 10 k\Omega$, $C_L = 15 pF$ connected to mid supply, $V_{CM} = V_S/2$, unless otherwise noted.Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Input Offset Voltage	V _{OS}	V_S = 3 to 5.5 V, T_A = 25°C		±50	±550	μV
		V _S = 3 to 5.5 V		±100	±1050	
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			±1	±5	μV/°C
Input Bias Current (Note 6)	I _{IB}			±1		pА
					±600	pА
Input Offset Current (Note 6)	I _{OS}			±1		pА
					±600	pА
Common Mode Rejection Ratio @ Vs = 5.5 V	CMRR	$V_{CM} = V_{SS}$ to V_{DD}	77	92		dB
Common Mode Rejection Ratio @ Vs = 3 V			70	87		
Input Capacitance	C _{IN}	Differential		6		pF
		Common Mode		12		
OUTPUT CHARACTERISTICS						-
Open Loop Voltage Gain	A _{VOL}	V_{O} = V_{SS} + 0.05 V to V_{DD} – 0.05 V		120		dB
Open Loop Output Impedance	Z _{OUT_OL}			See Figure 29		Ω
Output Voltage High Befer	Vou	μ – 1 mΔ			30	m\/

			Figure 29		
Output Voltage High, Refer-	V _{OH}	I _L = 1 mA		30	mV
enced to Rail (Note 6)		I _L = 10 mA		120	
Output Voltage Low, Refer-	V _{OL}	l _L = 1 mA		30	mV
enced to Rail (Note 6)		I _L = 10 mA		120	
Short Circuit Current	I _{SC}	Sinking Current	25		mA
		Sourcing Current	25		

DYNAMIC PERFORMANCE

Gain Bandwidth Product	GBWP		10	MHz
Gain Margin	A _M	V_{S} = 5.5 V, Load = 10 k Ω 100 pF	10	dB
Phase Margin	φм	V_{S} = 5.5 V, Load = 10 k Ω 100 pF	50	0
Slew Rate	SR	1 V Step, Rising Edge, V _S = 5.5 V A_v = 1, Load = 10 k Ω 100 pF	6	V/µs
		1 V Step, Falling Edge, V _S = 5.5 V A _v = 1, Load = 10 k Ω 100 pF	4	
		1 V Step, Rising Edge, V _S = 5.5 V A _v = 1, Load = 10 kΩ 60 pF	6	
		1 V Step, Falling Edge, V _S = 5.5 V A_v = 1, Load = 10 k $\Omega \parallel$ 60 pF	4	
Settling Time	t _S	0.1% V _o = 2 V step, AV = -1	0.5	μs
		0.01% V _o = 2 V step, AV = -1	1	μs
Turn On Time	t _{ON}		3.5	μs
Overload Recovery Time	t _{OR}	VIN \leq 100 mV Step, A _V = -100	2	μs
Capacitive Load Drive	CL		See Figure 30	pF


Table 4. ELECTRICAL CHARACTERISTICS $V_S = 3.0 V$ to 5.5 VAt $T_A = +25^{\circ}C$, $R_L = 10 k\Omega$, $C_L = 15 pF$ connected to mid supply, $V_{CM} = V_S/2$, unless otherwise noted.Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$, guaranteed by characterization and/or design.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
NOISE PERFORMANCE						
Total Harmonic Distortion + Noise	THD+N	$\label{eq:VS} \begin{array}{l} V_S = 5.5 \text{ V}, \ensuremath{f_{IN}} = 1 \text{ kHz}, \ensuremath{\text{AV}} = 1, \\ V_{out} = 1 \text{ Vrms} \end{array}$		0.001		%
Voltage Noise Density	e _N	V _S = 5.5 V, f _{IN} = 1 kHz		10		nV/√Hz
Voltage Noise, Peak-to-Peak	e _{PP}	V_{S} = 5.5 V, f _{IN} = 0.1 Hz to 10 Hz		3		μV _{PP}
POWER SUPPLY						

Power Supply Rejection Ratio	PSRR	V_{S} = 3 V to 5.5 V	73	89		dB
Quiescent Current	Ι _Q	No load		1	1.25	mA
					1.55	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 6. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

TYPICAL CHARACTERISTICS

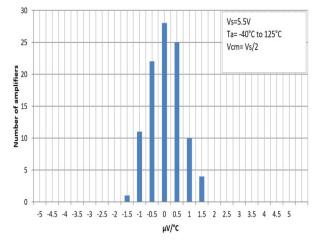


Figure 3. Input Offset Voltage vs. Temperature Distribution, $V_S = 5.5 V$

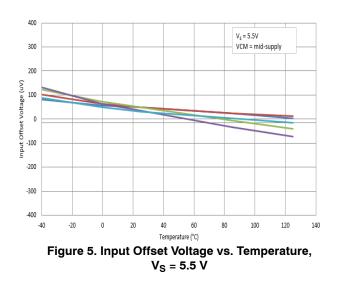


Figure 2. Input Offset Voltage Distribution, $V_S = 3 V, 25^{\circ}C$

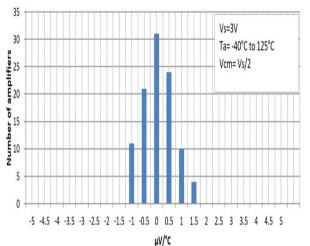
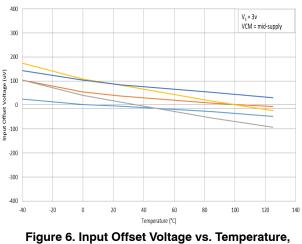
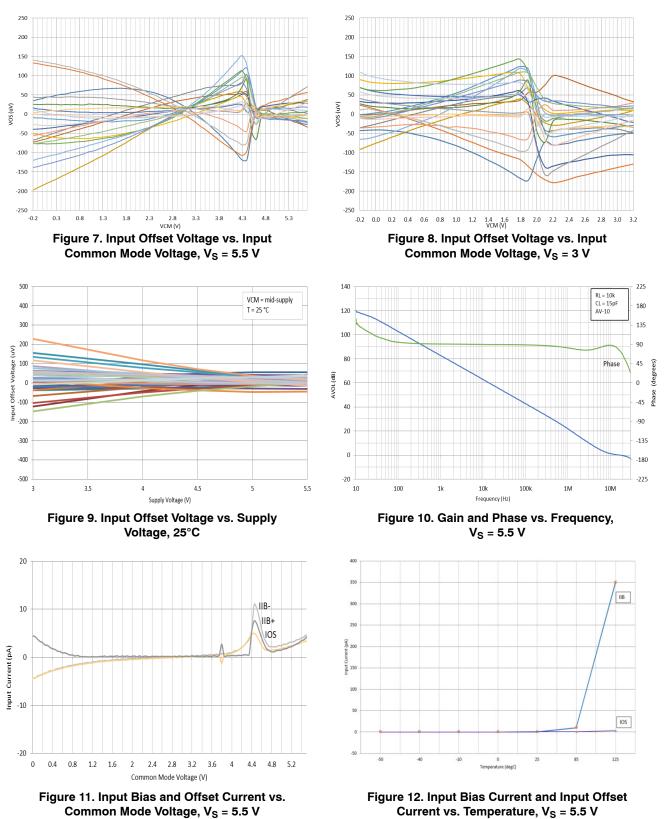
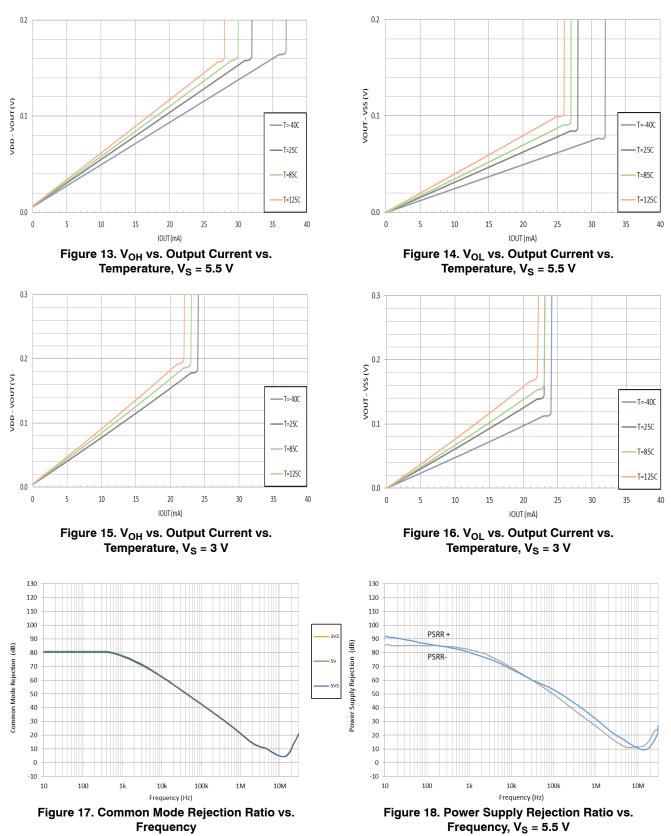
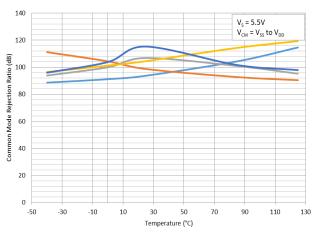
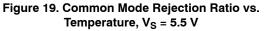




Figure 4. Input Offset Voltage vs. Temperature Distribution, V_S = 3 V



V_S = 3 V


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

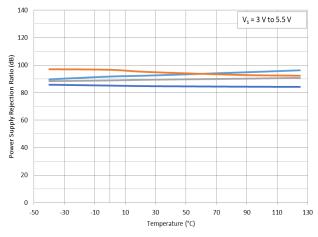


Figure 21. Power Supply Rejection Ratio vs. Temperature

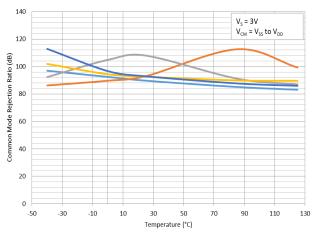
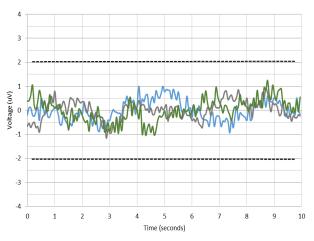
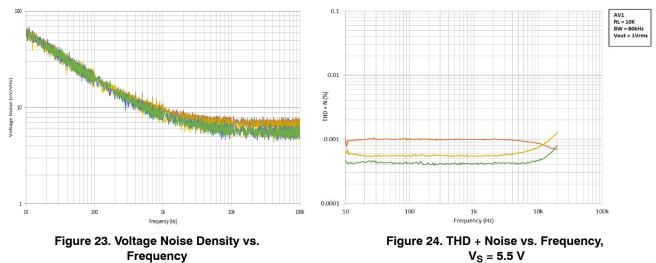
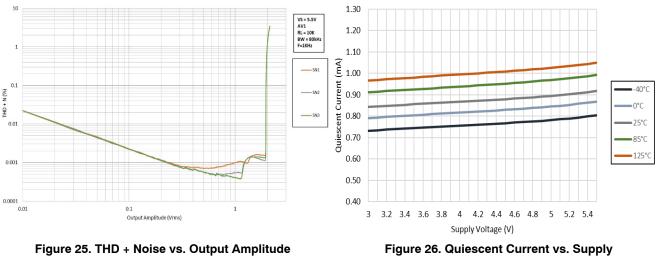
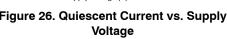
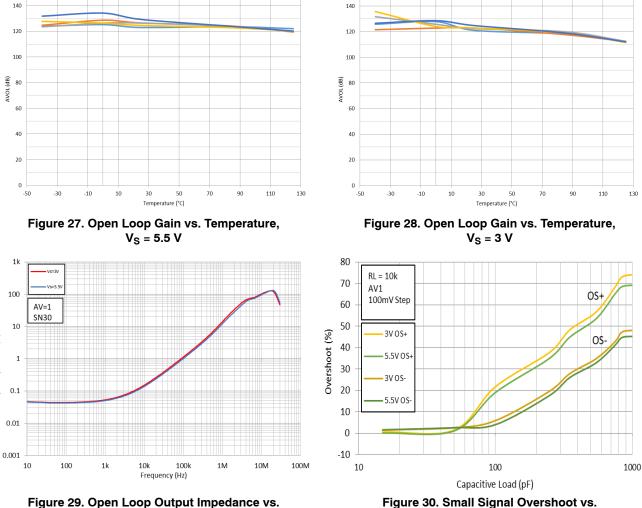


Figure 20. Common Mode Rejection Ratio vs. Temperature, V_S = 3 V

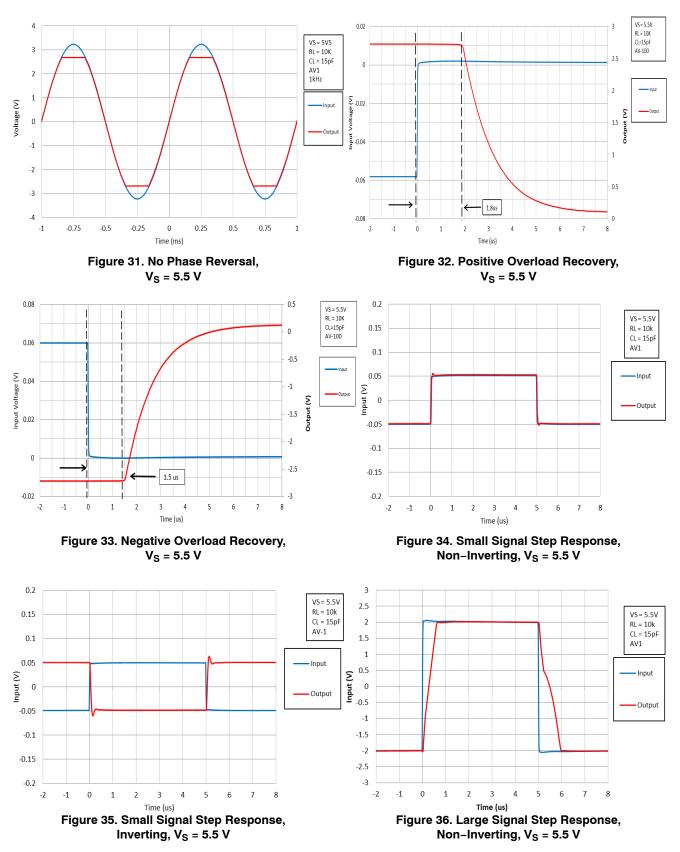

Figure 22. 0.1 Hz 10 Hz Voltage Noise


V_S = 5.5 V


TYPICAL CHARACTERISTICS

 T_A = 25°C, V_S = 5.5 V, V_{CM} = $V_S/2,$ unless otherwise noted.

at 1 KHz



Frequency

Output Impedance (Ω)

Capacitive Load

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

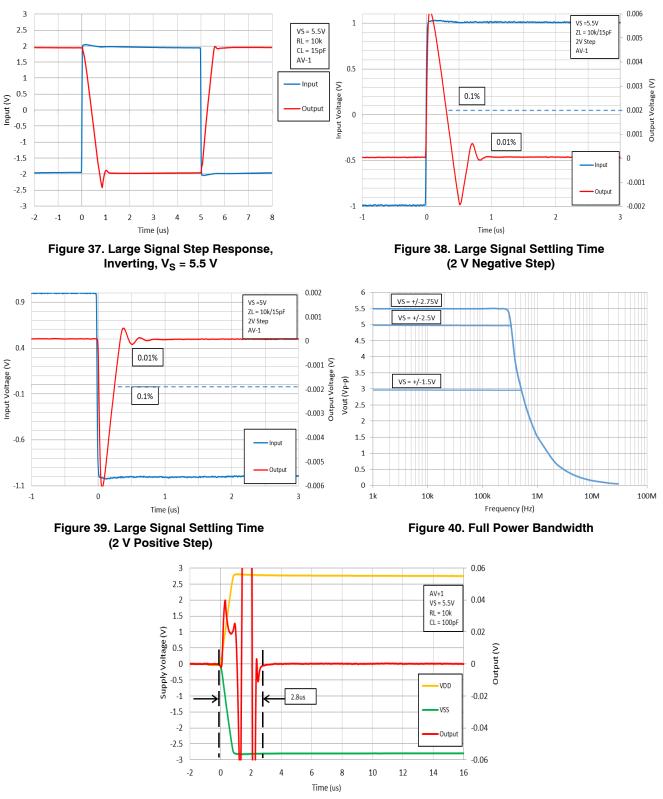


Figure 41. Turn On Time, V_S = 5.5 V

APPLICATIONS INFORMATION

APPLICATION CIRCUITS

Low-Side Current Sensing

The goal of low-side current sensing is to detect over-current conditions or as a method of feedback control. A sense resistor is placed in series with the load to ground. Typically, the value of the sense resistor is less than 100 m Ω to reduce power loss across the resistor. The op amp

amplifies the voltage drop across the sense resistor with a gain set by external resistors R1, R2, R3, and R4 (where R1 = R2, R3 = R4). Precision resistors are required for high accuracy, and the gain is set to utilize the full scale of the ADC for the highest resolution.

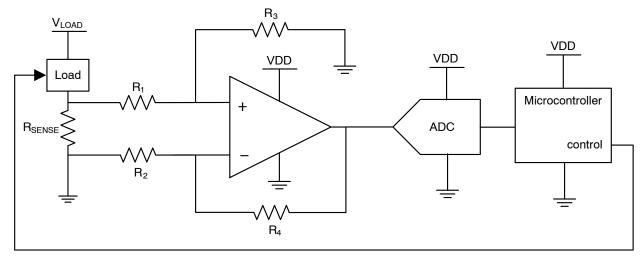


Figure 42. Low-Side Current Sensing

Differential Amplifier for Bridged Circuits

Sensors to measure strain, pressure, and temperature are often configured in a Wheatstone bridge circuit as shown in Figure 43. In the measurement, the voltage change that is produced is relatively small and needs to be amplified before going into an ADC. Precision amplifiers are recommended in these types of applications due to their high gain, low noise, and low offset voltage.

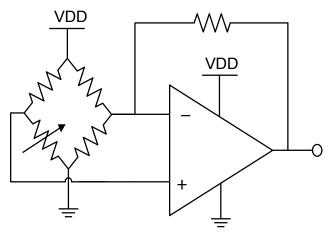
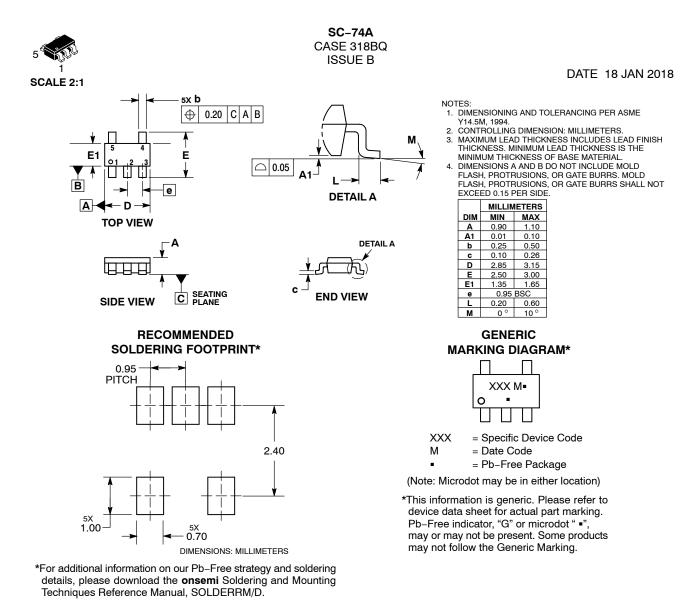



Figure 43. Bridge Circuit Amplification

GENERAL LAYOUT GUIDELINES

To ensure optimum device performance, it is important to follow good PCB design practices. Place 0.1 μ F decoupling capacitors as close as possible to the supply pins. Keep traces short, utilize a ground plane, choose surface-mount components, and place components as close as possible to the device pins. These techniques will reduce susceptibility to electromagnetic interference (EMI). Thermoelectric effects can create an additional temperature dependent offset voltage at the input pins. To reduce these effects, use metals with low thermoelectric-coefficients and prevent temperature gradients from heat sources or cooling fans.

onsemi

DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED CONTROLLED CONTROL CON						
DESCRIPTION:	SC-74A		PAGE 1 OF 1					
the right to make changes without furth purpose, nor does onsemi assume a	onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.							

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>